Switchable Charge Injection Barrier in an Organic Supramolecular Semiconductor.
نویسندگان
چکیده
We disclose a supramolecular material that combines semiconducting and dipolar functionalities. The material consists of a discotic semiconducting carbonyl-bridged triarylamine core, which is surrounded by three dipolar amide groups. In thin films, the material self-organizes in a hexagonal columnar fashion through π-stacking of the molecular core and hydrogen bonding between the amide groups. Alignment by an electrical field in a simple metal/semiconductor/metal geometry induces a polar order in the interface layers near the metal contacts that can be reversibly switched, while the bulk material remains nonpolarized. On suitably chosen electrodes, the presence of an interfacial polarization field leads to a modulation of the barrier for charge injection into the semiconductor. Consequently, a reversible switching is possible between a high-resistance, injection-limited off-state and a low-resistance, space-charge-limited on-state. The resulting memory diode shows switchable rectification with on/off ratios of up to two orders of magnitude. This demonstrated multifunctionality of a single material is a promising concept toward possible application in low-cost, large-area, nonvolatile organic memories.
منابع مشابه
Band alignment at metal/organic and metal/oxide/organic interfaces
Charge injection at metal/organic interfaces dictates the performance, lifetime, and stability of organic electronic devices. We demonstrate that interface dipole theory, originally developed to describe Schottky contacts at metal/semiconductor interfaces, can also accurately describe the injection barriers in real organic electronic devices. It is found that theoretically predicted hole inject...
متن کاملFerroelectric self-assembled molecular materials showing both rectifying and switchable conductivity
Advanced molecular materials that combine two or more physical properties are typically constructed by combining different molecules, each being responsible for one of the properties required. Ideally, single molecules could take care of this combined functionality, provided they are self-assembled correctly and endowed with different functional subunits whose strong electronic coupling may lea...
متن کاملAdvanced surface modification of indium tin oxide for improved charge injection in organic devices.
A new method is described for surface modification of ITO with an electroactive organic monolayer. This procedure was done to enhance hole injection in an electronic device and involves sequential formation of a monolayer of a pi-conjugated organic semiconductor on the indium tin oxide (ITO) surface followed by doping with a strong electron acceptor. The semiconductor monolayer is covalently bo...
متن کاملMinimizing electrode edge in organic transistors with ultrathin reduced graphene oxide for improving charge injection efficiency.
Electrode materials and geometry play a crucial role in the charge injection efficiency in organic transistors. Reduced graphene oxide (RGO) electrodes show good compatibility with an organic semiconductor from the standpoint of energy levels and ordered growth of the organic semiconductor, both of which are favourable for charge injection. However, the wide electrode edge (>10 nm) in commonly-...
متن کاملSwitching and tuning organic solid-state luminescence via a supramolecular approach.
Unusual intermolecular interactions of organic luminescent acid, 2-cyano-3(4-(diphenylamino)phenyl)acrylic acid (CDPA), with amines lead to the formation of supramolecular luminescence systems with switchable and tunable solid-state luminescence.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS applied materials & interfaces
دوره 8 24 شماره
صفحات -
تاریخ انتشار 2016